Scientists generate an atlas of the human genome using stem cells

Human gene atlas opens up new avenues for studying cancer and genetic disorders

Date: April 23, 2018
Source: The Hebrew University of Jerusalem

Summary: Scientists have generated an atlas of the human genome that illuminates the roles our genes play in health and disease. The gene atlas, created using a state-of-the-art gene editing technology and human embryonic stem cells, enables a new functional view on how we study the human genome, and provides a tool that will change how we study and treat cancer and genetic disorders.

Scientists from the Hebrew University of Jerusalem have generated an atlas of the human genome using a state-of-the-art gene editing technology and human embryonic stem cells, illuminating the roles that our genes play in health and disease. The scientists have reported their findings in the journal Nature Cell Biology.

Embryonic stem cells are a unique resource as they can turn into any adult cell in our bodies. Their versatile nature puts them at the center of attention in the fields of regenerative medicine, disease modeling and drug discovery. In parallel to the discovery of human embryonic stem cells, another milestone in biology was completed with the sequencing of the human genome, and the identification of the entire set of genes responsible for our genetic identity. This finding has led to a new challenge of understanding the function of the genes in the human genome. Now, the new study by scientists at the Hebrew University provides a novel tool to map the function of all human genes using human embryonic stem cells.

The researchers analyzed virtually all human genes in the human genome by generating more than 180,000 distinct mutations. To produce such a vast array of mutations, they combined a sophisticated gene-editing technology (CRISPR-Cas9 screening) with a new type of embryonic stem cells that was recently isolated by the same research group. This new type of stem cells harbors only a single copy of the human genome, instead of two copies from the mother and father, making gene editing easier thanks to the need of mutating only one copy for each gene.

The researchers show that a mere 9% of all the genes in the human genome are essential for the growth and survival of human embryonic stem cells, whereas 5% of them actually limit the growth of these cells. They could also analyze the role of genes responsible for all hereditary disorders in early human development and growth. Furthermore, they showed how cancer-causing genes could affect the growth of the human embryo.

"This gene atlas enables a new functional view on how we study the human genome and provides a tool that will change the fashion by which we analyze and treat cancer and genetic disorders," said Prof. Nissim Benvenisty, MD, PhD, Director of the Azrieli Center for Stem Cells and Genetic Research and the Herbert Cohn Chair in Cancer Research at the Hebrew University of Jerusalem, and the senior author of the study.
Another key finding of the study was the identification of a small group of genes that are uniquely essential for the survival of human embryonic stem cells but not to other cell types. These genes are thought to maintain the identity of embryonic stem cells and prevent them from becoming cancerous or turning into adult cell types.

“This study creates a new framework for the understanding of what it means to be an embryonic stem cell at the genetic level,” said Dr. Atilgan Yilmaz, PhD, postdoctoral fellow and a lead author on the paper. “The more complete a picture we have of the nature of these cells, the better chances we have for successful therapies in the clinic.”

Story Source:
Materials provided by The Hebrew University of Jerusalem. Note: Content may be edited for style and length.

Journal Reference:

Cite This Page: MLA APA Chicago


RELATED STORIES

CRISPR Modified to Epigenetically Treat Diabetes, Kidney Disease, Muscular Dystrophy
Dec. 7, 2017 — Scientists have created a new version of the CRISPR/Cas9 genome editing technology that allows them to activate genes without creating breaks in the DNA, potentially circumventing a major hurdle to ... read more »

Improved Gene Expression Atlas Shows That Many Human Long Non-Coding RNAs May Actually Be Functional
Mar. 1, 2017 — Scientists have generated a comprehensive atlas of human long non-coding RNAs with substantially improved gene models, allowing them to better assess the diversity and functionality of these RNAs. ... read more »

New Genome Editing Method Brings Possibility of Gene Therapies Closer to Reality
July 11, 2014 — An important theoretical foundation for stem cell-based gene therapy has been published by scientists. The combination of stem cells and targeted genome editing technology provides a powerful tool to ... read more »

Bacterial DNA May Integrate Into Human Genome More Readily in Tumor Tissue
June 20, 2013 — Bacterial DNA may integrate into the human genome more readily in tumors than in normal human tissue, according to a new study. Researchers analyzed genomic sequencing data available from the Human ... read more »

FROM AROUND THE WEB

Below are relevant articles that may interest you. ScienceDaily shares links and proceeds with scholarly publications in the TrendMD network.

New Diagnostic Test for Familial Mediterranean Fever Emerges from Inflammation Study
360Dx
Scientists generate an atlas of the human genome using stem cells: Human gene atlas opens up new avenues for studying cancer and gene...

Polish MDx Firm Targets Consumer Market With Prophylactic Clinical Whole-Genome Analysis
360Dx

Grail Shares New Data From Early Detection Assay Training in CCGA Study
360Dx

Vogelstein Lab Moves Further Into Proteomics With Mass Spec-Based Cancer Study
360Dx

A computational analysis of the impact of mass transport and shear on three-dimensional stem cell cultures in perfused micro-bioreactors
Kaul, Chinese Journal of Chemical Engineering

Polymorphism of D-mannitol: Crystal structure and the crystal growth mechanism
Su, Chinese Journal of Chemical Engineering

Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap
Shan Jiang et al., Applied Mathematics and Mechanics

Free vibration of layered cylindrical shells filled with fluid
M. D. Nurul Izyan et al., Applied Mathematics and Mechanics